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Abstract Sponges are well known to harbor diverse
microbes and represent a signiWcant source of bioactive
natural compounds derived from the marine environ-
ment. Recent studies of the microbial communities of
marine sponges have uncovered previously undescribed
species and an array of new chemical compounds. In
contrast to natural compounds, studies on enzymes with
biotechnological potential from microbes associated
with sponges are rare although enzymes with novel activ-
ities that have potential medical and biotechnological
applications have been identiWed from sponges and
microbes associated with sponges. Both bacteria and
fungi have been isolated from a wide range of marine
sponge, but the diversity and symbiotic relationship of
bacteria has been studied to a greater extent than that of
fungi isolated from sponges. Molecular methods (e.g.,
rDNA, DGGE, and FISH) have revealed a great diver-
sity of the unculturable bacteria and archaea. Metage-
nomic approaches have identiWed interesting metabolic
pathways responsible for the production of natural com-
pounds and may provide a new avenue to explore the
microbial diversity and biotechnological potential of
marine sponges. In addition, other eukaryotic organisms
such as diatoms and unicellular algae from marine
sponges are also being described using these molecular
techniques. Many natural compounds derived from
sponges are suspected to be of bacterial origin, but only a
few studies have provided convincing evidence for sym-
biotic producers in sponges. Microbes in sponges exist in
diVerent associations with sponges including the true
symbiosis. Fungi derived from marine sponges represent
the single most proliWc source of diverse bioactive

marine fungal compounds found to date. There is a
developing interest in determining the true diversity of
fungi present in marine sponges and the nature of the
association. Molecular methods will allow scientists to
more accurately identify fungal species and determine
actual diversity of sponge-associated fungi. This is espe-
cially important as greater cooperation between bacteri-
ologists, mycologists, natural product chemists, and
bioengineers is needed to provide a well-coordinated
eVort in studying the diversity, ecology, physiology, and
association between bacteria, fungi, and other organisms
present in marine sponges.
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Introduction

Since the 1970s, more than 15,000 structurally diverse
natural products with an astounding array of bioactivi-
ties have been discovered from the marine environment
[13]. Sponges (Porifera) are known to be a rich source of
bioactive secondary metabolites that are of biotechno-
logical interest because of their antiviral, antitumor, anti-
microbial or general cytotoxic properties. Most of these
described marine natural compounds originate from
sponges, which represent one of the oldest animal phyla
[17, 46]. So far about 15,000 species have been described,
but the true diversity is probably higher [14, 28]. As Wlter
feeders, sponges pump a large volume (up to 24 m3 kg¡1

sponge day¡1) of seawater, which contains 1–5 £ 106

bacteria ml¡1 [37, 80]. Sponges are well known to be
hosts for a large community of microorganisms, such as
bacteria and fungi, and some of these microbes are prob-
ably host-speciWc. Microbes can compose up to 50% of
the sponge tissue volume [23, 77]. That exceeds the num-
ber of bacteria in seawater by two–three orders of mag-
nitude [17, 75, 81]. Through true sponge–microbe
symbioses, sponges may beneWt from the provision of
nutrients, transportation of waste products or active
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metabolites, chemical defense, or contribution to
mechanical structure [20, 37, 76, 85, 86, 89–92, 94]; this
relationship has elicited considerable interest among
researchers investigating marine sponges as a source of
natural products. In particular, accumulating evidence
has shown that the bacteria associated with sponges are
the origin of many compounds of interest [53, 73]. Recent
studies of microbial communities associated with
sponges have resulted in identiWcation of new marine
microbes, novel natural compounds, and host speciWcity
[1, 52, 71, 73, 84].

Diversity of microbial consortia associated with sponges

Microbial symbiosis is an ubiquitous aspect of life and
plays a major part in the emergence and evolution of
eukaryotes [64]. Intimate associations between microbes
and eukaryotic hosts are common in the marine environ-
ment [5, 56, 57]; in particular, marine animals and plants
are well known to have developed highly speciWc rela-
tionships with numerous microbes [37]. In this section,
we focus on sponge microbial diversity.

Bacteria associated with sponges

The unique nature of the sponge–microbe association,
together with the ecological and biotechnological impor-
tance of sponges, makes marine sponges an ideal system
for the study of microbial diversity, evolution of the
marine eukaryote–microbe association, and microbial
dispersal associated with bioinvasions [7, 8, 18, 50, 72].
The bacterial load in sponges seems proportionally cor-
related with the irrigation status of the sponge. Sponges
with a poor irrigation system contain high bacterial
numbers while the well-irrigated sponges have fewer bac-
teria within their tissues [78, 85]. Bacterial distribution
follows a general pattern within every sponge. Photosyn-
thetically active microorganisms, such as cyanobacteria
and eukaryotic algae, are located in the outer, light-
exposed tissue layers [61, 90]. Heterotrophic and possibly
also autotrophic bacteria populate the inner core [23].

The presence of large numbers of bacteria within
marine sponges was Wrst established by microscopic
studies [78, 87]. Early studies determined the association
of bacteria with sponges based on bacterial morphology
and recognized three types of associations of bacteria
with sponges [78, 85–87]. The Wrst group contained bac-
teria similar to those of ambient seawater and not spe-
ciWc to sponges, the second group contained intracellular
bacteria that are speciWc to sponges, and the third group
contained bacteria within the sponge mesophyl, also spe-
ciWc to sponges. The characteristic features of the bacte-
rial cell wall (gram-positive or gram-negative) and
internal membrane structures also helped to identify sev-
eral bacterial groups using transmission electron micros-
copy. Cyanobacteria were noticed in sponges in several
studies [24, 66, 89]. The presence of cyanobacteria in

sponges suggested the idea of symbiotic microbes in
sponges. Indeed, several lines of evidence indicated that
some sponges obtain a signiWcant portion of their nutri-
ents from the bacterial symbionts, making the symbiosis
a true mutualism. Many shallow-water sponges with
cyanobacteria exhibit mechanisms that allow bacterial
contribution to the host nutrition through extracellular
lysis and phagocytosis [85, 92]. Moreover, symbiotic
cyanobacteria have been shown to Wx nitrogen to pro-
vide their hosts with amino acids and also to control the
redox potential within sponge tissue via photosynthesis
[89, 94]. On the other hand, cyanobacterial symbionts
have been observed to overgrow and kill their host
sponge [62]. DiVerent color forms of sponges are attrib-
uted to the presence of diVerent cyanobacteria and their
production of diVerent secondary metabolites [72]. Het-
erotrophic bacterial symbionts also contribute to the
nutrition of sponges. However, the true symbiotic rela-
tionship between heterotrophic bacteria and sponges has
only been proved in a few cases [29].

Physiologically and phylogenetically diverse sponge-
associated microbes have been identiWed using cultiva-
tion-dependent methods [21, 63, 81, 93]. However, the
contribution of cultivation to microbial diversity in
sponges is limited by the cultivation processes. The selec-
tivity of culture conditions has been a great concern to
researchers because the selected strains can become the
dominant population under culture conditions even if
they are minor components in the sponge. Nevertheless,
bacterial isolates with special physiological properties,
such as aerobic chemoheterotrophic bacteria [93], nitro-
gen-Wxing bacteria [89], methane-oxidizing bacteria [79],
phototrophic bacteria [68, 89], and anoxygenic photo-
trophic bacteria [30] have been isolated from marine
sponges. Most recently, novel actinobacteria were culti-
vated from several marine sponges [35, 45]. As in other
natural habitats, culturable microbes in sponges repre-
sent only a small percentage of the total bacterial com-
munity. The percentage of the culturable microbial
community varies among sponge species and represents
3–11, 0.1–0.23, and 0.15% of the total bacterial popula-
tion of Ceratoporella nicholsoni, Rhopaloides odorabile,
and Aplysina aerophoba, respectively [17, 63, 81]. These
observations are generally consistent with an estimated
1% of culturable microbes in the context of natural
microbial ecosystems [23].

In the last decade, the novel applications of several
molecular cultivation-independent techniques, including
16S rDNA sequencing, denaturing gradient gel electro-
phoresis (DGGE), and Xuorescence in situ hybridization
(FISH), have resulted in a remarkable array of new dis-
coveries on marine microbial communities in sponges
(for recent reviews, see [23, 24, 25, 29, 38, 50]). These dis-
coveries have greatly improved our understanding of the
microbial complexity of the sponge-associated microbes
and facilitated the detection of speciWc groups of prok-
aryotes without cultivation. A wider range of sponge-
associated microbes have been described because of the
development of the new detection techniques. These



547
include a diverse range of heterotrophic bacteria, cyano-
bacteria, facultative anaerobes, unicellular algae, and
archaea [16, 17, 21–23, 39, 40, 57, 66, 67, 82–84]. In addi-
tion, planktonic and benthic diatoms have also been
reported living inside Antarctic sponges [9]. Generally,
the phylogenetic signature of the sponge-associated
microbial consortium is distinctly diVerent from that of
open seawater [19, 22]. Molecular analyses support that
bacterial communities are consistently associated with a
particular species [84]. Some of the sponge-associated
bacteria could be passed on from generation to genera-
tion [74, 88]. Substantial variability exists in microbial
communities from diVerent sponge species, and there-
fore, some bacteria are thought to be host-speciWc “spe-
cialists” [71]. Most recently, a new group of bacteria,
called “Poribacteria,” has been identiWed in several
sponges and proved to be sponge-speciWc using molecu-
lar approaches [14]. Phylogenetic analyses of the isolates
of the cyanobacterium Oscillatoria spongeliae from
diVerent species of Dysidea sponges also reveal a high
degree of host speciWcity [72]. The mitochondrial marker
cytochrome oxidase and other host speciWcity studies
support the coevolution between heterotrophic bacteria,
cyanobacteria, and their sponge hosts [72, 85, 87, 89].
Sponge–microbe associations could date back to Pre-
cambrian times about 500 million years ago [88]. The
widely distributed and evolutionarily ancient relation-
ship makes sponges ancient niches for microbes [16, 23,
57, 66]. As living fossils, sponges may contain genetic
Wngerprints for the origin of their microbes and could be
good hosts for study of microbial evolution and biogeog-
raphy.

Fungi associated with sponges

Marine fungi have long been known to exist in the
marine environment. Ecologically, they are important
intermediaries of energy Xow from detritus to higher tro-
phic levels and play an important role in nutrient regen-
eration cycles as decomposers of dead and decaying
organic matter. Moreover, some marine fungi also cause
diseases of marine animals and plants while others form
mutualistic symbiotic relationships with other organ-
isms. Some marine fungi produce toxins, and others are
pathogens to both immune-compromised marine ani-
mals and beach-swimmers. However, marine fungi
remain the most underexplored group in the marine
environment. It is particularly true for fungi associated
with sponges. Sponges exhibit an ubiquitous association
with diverse marine fungi [47, 72]. Research reports on
sponge-derived fungi typically have concentrated on nat-
ural product chemistry, studies dealing with biology of
fungi in sponges are rare [6, 27]. Marine ascomycetes of
the genus Koralionastes was reported to have a unique
association with crustaceous sponges, developing their
ascomata on or within these hosts [36]. In a search for
new natural compounds from fungi isolated from
sponges collected from six diVerent locations, including
temperate, subtropical, and tropical regions, a total 681

fungal strains were isolated from 16 species of sponges
[27]. The isolated fungi belonged to 13 genera of Asc-
omycota, 2 of Zygomycota, and 37 of mitosporic fungi.
The diversity of genera and the number of isolates per
sample varied greatly between the diVerent locations.
Acremonium, Arthrium sp., Coniothyrium, Fusarium,
Mucor, Penicillium, Phoma, Trichoderma, and Verticilum
sp. strains were isolated from almost all locations
although diVerent fungal genera were prevalent at the
various locations. In addition, certain fungal genera pre-
dominated in some sponges, and the prevalent fungal
genera varied in sponges sampled from the same loca-
tion. However, identiWcation of fungal isolates was solely
based on morphology [27]. In another study of distribu-
tion of marine Wlamentous fungi associated with marine
sponges in Coral reefs of Palau and Bunaken Island
(Indonesia), morphological characters used for identiW-
cation revealed that the number of fungi associated with
sponges sampled at diVerent sites varied greatly between
collection sites [47]. Unfortunately, the lack of informa-
tion, such as the generic label of fungal isolates and the
names of sponges, made it diYcult to judge diversity and
distribution of fungi associated with the marine sponges
in this study. Phylogenetic analyses based on ITS
sequences indicated that the diversity of fungal cultur-
able population varied among the Hawaiian sponges
Suberites zeteki and Mycale armata (Li and Wang,
unpublished data). In general, several lines of evidence
support the idea that fungi are ubiquitously associated
with sponges, but the nature of the association is
unknown [6, 27].

Biotechnological potential of sponge-associated 
microbes

Sponges are well known to produce a number of biologi-
cally active secondary metabolites, which are used as
repellents against predators and also manage the sponge-
associated microbes and microfauna [12, 58]. Among
marine invertebrates, sponges remain the most proliW-
cally studied phylum in the search for novel pharmaco-
logically active compounds [11]. Some enzymes with
interesting features have been isolated from sponges and
the microbes associated with sponges [38, 39]. In the last
two decades, tremendous progress has been made in the
isolation and chemistry of secondary metabolites from
bacteria and fungi associated with [6, 33, 53, 55, 60]. In
this section, we brieXy review the status of pharmaceuti-
cal compounds and enzymes from microbes associated
with sponges.

Pharmaceutical compounds from sponge-associated
microbes

Indeed, many natural products with novel bioactivities
have been discovered from sponges [59, 60]. These
compounds range from derivatives of amino acids and
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nucleotides to macrolides, porphyrins, terpenoids, and
sterols with diverse bioactivities [72]. Many sponge-
derived metabolites have been suspected to be actually
produced by microbes, since they resemble microbial
natural products [12, 53]. Several studies have demon-
strated that microbial isolates associated with sponges
produced the same compounds isolated from sponges
[3, 15, 69, 76]. However, these results do not rule out the
possibility that substances might be transported between
diVerent cell types via export or sequestration mecha-
nisms [55]. Recent studies of the culturable sponge
microbial communities have resulted in the identiWcation
of new natural compounds with diverse biological activi-
ties [15, 21, 26, 73, 76]. Detailed information on natural
compounds from bacteria isolated from sponges was
recently reviewed [53]. Hence, sponges have been consid-
ered as “microbiological fermentors” for new natural
products with potential biotechnological applications
[72]. Furthermore, metagenomic approaches have
revealed novel chemistry of the uncultivated symbionts
in marine sponge Theonella swinhoei and Discodermia
dissoluta and have opened a new avenue for a better
understanding of the valuable natural compounds from
symbiotic bacteria in sponges [54, 55, 65]. Due to the bias
of DNA extraction and cloning during library construc-
tion, much more work is needed to address the reliability
of biochemical and genetic diversity revealed using
metagenomic sponge libraries [65].

Terrestrial fungi produce a variety of chemically
diverse natural compounds with interesting biological
activities. Until recently, only modest attention has been
devoted toward metabolites from marine (or marine-
derived) fungi. To date, about 300 new compounds from
marine-derived fungi have been described and reviewed
[4, 6, 12, 33, 60]. These documented discoveries clearly
show that marine fungi are a proliWc source of structur-
ally unique and biologically active natural compounds.
Fungi derived from sponges, algae, sea grasses, plants, or
wood substrates account for the majority of chemistry
described for marine fungal natural compounds [6].
Fungi associated with sponges are the single most pro-
liWc source of new marine fungal compounds and display
diverse biological activities [6, 32]. These fungi account
for the largest number (33%) of total described marine
fungal compounds and produce the overall highest num-
ber of novel metabolites (28%) [6]. However, a high per-
centage of marine fungi derived from sponges is
considered to be of terrestrial origin, instead of marine
origin [27]. The current isolation methods select for the
fastest growing strains with no selection on dominant
strains in sponges [32]. Hence, morphology-based taxon-
omy for sponge marine strains needs to be reevaluated
using molecular approaches. Fermentation conditions
(e.g., salt concentration) appear to signiWcantly aVect the
proWles of secondary metabolites from marine strains,
but diVerent species behave diVerently in the same condi-
tions [6, 31, 48, 49, 70]. The marine-derived fungi Phoma
sp. and Aspergillus sydowii diVer signiWcantly from their
terrestrial counterparts in secondary metabolite proWles

[2, 51]. Therefore, studies of metabolic pathways of both
a sponge marine fungus and its terrestrial counterpart
may reveal their diVerences at a molecular level.

Enzymes from sponge-associated microbes

The microhabitats on the surface and internal spaces of
sponges are unique ecological niches. As Wlter feeders,
sponges are exposed to pollutants present in waters, and
accumulated impurities from phytoplankton, or other sus-
pended matters. Sponges swirl in a large volume of seawa-
ter containing organic particles. Hence, it is reasonable to
believe that some microbes in sponges and/or sponges
themselves produce hydrolytic enzymes to convert these
organic matters into nutrients. In contrast to the literature
on natural compounds, studies on enzymes with biotech-
nological potential from microbes associated with sponges
are rare. Amylases, carboxymethylcellulases, proteases,
and other hydrolytic enzymes are widely used in the indus-
try for the manufacture of pharmaceuticals, foods, bever-
ages, and confectionery as well as in textile and leather
processing, and waste water treatment [95]. Species of the
bacterial genus Cytophaga can hydrolyze agar and were
identiWed from the sponge Halichondria panacea [29]. Sev-
eral Desulfovibrio bacteria with ability to dehalogenate
and degrade brominated compounds were isolated from
the marine sponge A. aerophoba [1]. Bacteria isolated from
six marine sponges (Spirastrella sp., Phyllospongia sp., Irci-
nia sp., Aaptos sp., Azorica sp., and Axinella sp.) were iden-
tiWed to produce amylase, carboxymethylcellulase, and
proteases [44]. Furthermore, the bacterium Arthrobacter
ilicis and fungus Mucor sp. isolated from the sponge Spir-
astrella sp. were found to produce an acetylcholinesterase
and amylase, respectively [42, 43]. These two enzymes were
heat-tolerant and their activities not aVected by the major
cations of seawater, such as Na+, Ca2+, and Mg2+, at rela-
tively high concentrations. The metagenomic approach
has also identiWed several novel enzymes with potential
application in environmental biotechnology, including a
molybdenum containing oxidoreductase and halogenases
from marine sponges (U. Hentschel group, personal com-
munication). Finally, the bacterium Micrococcus sp. asso-
ciated with the Spirastrella sponge produced urethanase,
which could potentially be used to remove urethane, a
cancer-causing chemical, from alcoholic beverages [41].

Conclusion

Recent advances in understanding sponge–microbe asso-
ciations have dramatically enriched our knowledge on
the diversity, population ecology, and biotechnology of
sponge-associated microbes. However, the information
on diversity of the sponge-associated microbes is still
fragmentary, and many aspects of the sponge–microbe
associations are still unexplored. In particular, our
understanding of marine microbial diversity in sponges
has been focused on bacteria, with much less emphasis
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on eukaryotes (e.g., fungi) [71]. Exploration of biotech-
nological potentials of microbes associated with sponges
has been limited due to our inability to cultivate these
microbes associated with sponges. Several methods to
simulate native habitat conditions and to use low-nutri-
ent media have been successful to cultivate new marine
bacteria from diVerent marine habitats [10, 34, 96].
Although sponge agar and other media have been used
to cultivate microbes from sponges [21, 52, 81], new culti-
vation methods are clearly needed for better exploration
of biotechnological potential of sponge-associated
microbes. Environmental genomic approaches could be
useful to explore uncultured microbial populations for
the purpose of producing new chemical compounds and
industrial enzymes. Other microbes, compounds with
novel structures and biological activities, and enzymes
with desirable industrial features will be identiWed from
microbial consortia associated with sponges in the near
future using new microbiological cultivation methods,
molecular techniques, and analytical tools. Particularly,
coordination among microbiologists, natural product
chemists, mycologists, and bioengineers to investigate
biodiversity and biotechnological potential of sponge-
associated microbes will contribute signiWcantly to the
pharmaceutical and enzyme industries.
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